• 20 November 2014
    • Физика
    • Автор: Alena262003

    У равных треугольников АВС и А1В1С1 из вершин В и В1 проведены биссектрисы ВD и В1D1. Докажите равенство треугольников СВD и C1B1D1.

    • 20 November 2014
    • Ответ оставил: BABKA100500

    Известно, что треугольники АВС и А1В1С1 равны, тогда АВ=А1В1, ВС=В1С1, АС=А1С1. Углы так же равны соответственно равны. Следовательно, биссектрисы ВD=B1D1. Биссектрисы делят стороны АС и А1С1 на две части соответственно (АD=A1D1 и DC=D1C1). Тогда треугольники CBD и C1B1D1

    Оцени ответ
    • НЕ НАШЛИ ОТВЕТ?
    Если вас не устраивает ответ или его нет, то попробуйте воспользоваться поиском на сайте и найти похожие ответы по предметы...

Последние опубликованные вопросы